METHOD STATEMENT

Determinand:

Phenoxyalkanoic herbicides and phenolic compounds by GC-MSMS

Matrix:

Treated Sewage Effluent, Trade Effluent & Surface Waters

Principle of Method:

Aqueous samples are extracted using a solid phase extraction technique. Acetonitrile is added to the sample to dissolve the compounds. A suitable sub sample is diluted with acidified de-chlorinated laboratory tap water and the compounds are isolated using solid phase extraction (SPE). The sample extract is solvent exchanged and concentrated. The sample extract is reacted with a silylation reagent. The sample extract is injected by large volume injection (LVI) into a capillary column gas chromatograph (GC), the organic compounds are separated and then identified and quantified with mass spectrometric detection (MSD) in multiple reaction monitoring (MRM) mode.

Sampling and Sample Preparation:

Sampling, samples should be collected in glass bottles with PTFE lined screw caps, no sample preservative is required. Storage - samples should be analysed as soon as possible after collection. When this is not possible, they should be stored under refrigeration at $3\pm2^{\circ}$ C in the dark, until analysis can begin. The maximum permissible storage time prior to analysis is 7 days (US EPA Soil Analysis QA QC Manual 2012 Table 3-1). Wherever possible, sample extracts should be analysed on the day of preparation. If this is not possible, the extracts may be stored under refrigeration at $5 \pm 3^{\circ}$ C in the dark and analysed within 7 days of preparation.

Interferences:

GC-MS/MS is an extremely selective technique and interferences should only be encountered very rarely. However, any compound, which passes through the extraction procedure, and has a similar gas chromatographic retention time and mass spectrometric properties to the compound of interest, may cause interference.

Performance of Method:

Precision, Bias and Limit of Detection

Determinand	LOD	Low Standard			High Standard			
Determinand	(ng/litre)	MEAN	RECOVERY	RSD	MEAN	RECOVERY	RSD	
4-Chloro-2-methylphenol	13.6	2041	102.1%	5.12%	8036	101.18%	2.83%	
2,4-Dichlorophenol	8.82	2007	100.4%	1.15%	7981	99.8%	1.25%	
2,4,6-Trichlorophenol	36.0	2017	100.8%	2.52%	7994	99.9%	2.27%	
MCPP	35.6	1149	115.0%	13.7%	4158	104.0%	5.72%	
MCPA	38.5	1121	112.1%	10.5%	4162	104.1%	4.49%	
2,4-DP (Dichlorprop)	43.9	1129	112.9%	12.7%	4159	104.0%	4.81%	
2,4-D	41.9	1101	110.1%	15.6%	4194	104.9%	4.68%	
Pentachlorophenol	22.4	1067	106.7%	6.43%	4038	101.0%	8.00%	
MCPB	32.9	1021	102.2%	5.26%	4012	100.3%	3.77%	
4-Paranonylphenol	18.3	1025	102.5%	5.21%	4068	101.7%	3.40%	
2,4-DB	15.5	1030	103.1%	2.84%	4003	100.1%	3.11%	

METHOD STATEMENT

Matrix Spike Recoveries

Final Effluent Results

Determinand	Fina	Final Effluent Low Spike			Final Effluent High Spike		
Determinand	MEAN	RECOVERY	RSD	MEAN	RECOVERY	RSD	
4-Chloro-2-methylphenol	2038	100.5%	5.81%	8038	100.1%	3.62%	
2,4-Dichlorophenol	2012	100.0%	1.54%	8066	100.7%	1.53%	
2,4,6-Trichlorophenol	2160	100.0%	4.73%	8216	100.7%	2.75%	
MCPP	1015	99.5%	5.05%	3881	96.5%	5.28%	
MCPA	1038	99.8%	3.80%	3994	98.9%	4.47%	
2,4-DP (Dichlorprop)	1009	99.7%	4.86%	3935	98.1%	4.51%	
2,4-D	1053	100.8%	11.1%	4106	101.5%	3.67%	
Pentachlorophenol	1040	103.5%	6.76%	4035	100.7%	6.17%	
MCPB	1011	99.9%	4.82%	4019	100.2%	3.04%	
4-Paranonylphenol	1027	101.4%	5.37%	4148	103.4%	3.45%	
2,4-DB	1038	102.3%	5.04%	4091	101.9%	3.45%	

Trade Effluent Results

Determinand	Trade	Trade Effluent Low Spike Trade Effluent H				ligh Spike	
Determinand	MEAN	RECOVERY	RSD	MEAN	RECOVERY	RSD	
4-Chloro-2-methylphenol	2293	100.6%	4.22%	8069	97.4%	5.41%	
2,4-Dichlorophenol	2219	99.8%	1.05%	8251	100.3%	1.05%	
2,4,6-Trichlorophenol	2005	99.1%	2.35%	7988	99.6%	1.96%	
MCPP	1063	104.4%	8.26%	3953	98.4%	6.80%	
MCPA	1221	106.7%	4.92%	4159	100.1%	5.80%	
2,4-DP (Dichlorprop)	1055	104.8%	5.63%	3955	98.7%	5.76%	
2,4-D	1083	104.7%	5.84%	4096	101.5%	4.36%	
Pentachlorophenol	1065	106.2%	8.00%	4104	102.5%	6.37%	
МСРВ	1025	101.5%	4.29%	4027	100.5%	3.48%	
4-Paranonylphenol	1005	99.7%	5.07%	3966	98.9%	4.24%	
2,4-DB	1039	100.6%	3.39%	4035	100.6%	3.39%	

Surface Water Results

Determinand	Surf	ace Water Low	Spike	Surface Water High Spike		
Determinand	MEAN	RECOVERY	RSD	MEAN	RECOVERY	RSD
4-Chloro-2-methylphenol	2047	101.6%	5.54%	8013	100.0%	2.51%
2,4-Dichlorophenol	2006	100.0%	1.41%	8049	100.6%	1.32%
2,4,6-Trichlorophenol	2032	99.8%	2.27%	8086	100.6%	2.17%
MCPP	1106	109.6%	13.9%	4117	102.7%	6.74%
MCPA	1109	108.4%	9.78%	4139	102.8%	6.31%
2,4-DP (Dichlorprop)	1092	108.2%	11.8%	4106	102.4%	5.49%
2,4-D	1072	103.4%	8.93%	4141	102.6%	4.98%
Pentachlorophenol	1059	105.5%	9.39%	4084	102.0%	5.98%
МСРВ	1029	102.1%	4.06%	4064	101.4%	2.80%
4-Paranonylphenol	1024	101.1%	4.68%	3979	99.2%	4.63%
2,4-DB	1036	102.6%	4.08%	4059	101.2%	2.25%

METHOD STATEMENT

Uncertainty of Measurement

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%

Determinand	Uncertainty of Measurement %
4-Chloro-2-methylphenol	15.29
2,4-Dichlorophenol	5.36
2,4,6-Trichlorophenol	6.31
МСРР	29.09
МСРА	20.75
2,4-DP (Dichlorprop)	23.51
2,4-D	23.74
Pentachlorophenol	26.40
МСРВ	11.96
4-Paranonylphenol	13.72
2,4-DB	13.56

References:

In-house method.